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Abstract

Background—Although both chronic lung disease and HIV are inflammatory diseases common 

in sub-Saharan Africa, the relationship between systemic inflammation and lung function among 

people living with HIV (PLWH) in sub-Saharan Africa is not well described.

Methods—We measured lung function (using spirometry) and serum high sensitivity C-reactive 

protein, IL-6, sCD14 and sCD163 in 125 PLWH on stable antiretroviral therapy and 109 age and 

sex-similar HIV-uninfected controls in rural Uganda. We modeled the relationship between lung 

function and systemic inflammation using linear regression, stratified by HIV serostatus, 

controlled for age, sex, height, tobacco and biomass exposure.

Results—Half of subjects (46%, [107/234]) were women and the median age was 52 years (IQR 

48–55). Most PLWH (92%, [115/125]) were virologically suppressed on first-line antiretroviral 

therapy. Median CD4 count was 472 cells/mm3. In multivariable linear regression models 

stratified by HIV serostatus, an interquartile range increase in IL-6 and sCD163 were each 

inversely associated with lung function (mL, 95% confidence interval) among PLWH (IL-6: FEV1 

−18.1 (−29.1, −7.1), FVC −17.1 (−28.2, −5.9); sCD163: FVC −14.3 (−26.9, −1.7)). hsCRP 

(>3mg/L vs. <1mg/L) was inversely associated with lung function among both PLWH and HIV-

uninfected controls (PLWH: FEV1 −39.3 (−61.7, −16.9), FVC −44.0 (−48.4, −6.4); HIV-

uninfected: FEV1 −37.9 (−63.2, −12.6), FVC −58.0 (−88.4, −27.5)). sCD14 was not associated 

with lung function, and all interaction terms were insignificant.
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Conclusions—Macrophage activation and systemic inflammation are associated with lower lung 

function among PLWH on stable antiretroviral therapy in rural Uganda. Future work should focus 

on underlying mechanisms and public health implications.
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INRODUCTION

People living with HIV (PLWH) are at increased risk for chronic obstructive pulmonary 

disease (COPD)1–3 through various poorly understood mechanisms including direct virus-

related pulmonary toxicity, persistent systemic inflammation, and accelerated immune 

senescence. The lungs are an HIV reservoir, even among PLWH with undetectable viral 

loads.4,5 HIV-infected pulmonary macrophages, lymphocytes and airway epithelial cells 

cause lymphocytic alveolitis, cellular apoptosis and lung parenchymal damage,6–9 which are 

associated with pulmonary complications among PLWH.10 Although alveolar viral load and 

inflammation decrease with antiretroviral therapy (ART),11 the parenchymal damage may be 

irreversible. Concurrently, intestinal barrier dysfunction and microbial translation are 

associated with systemic inflammation and immune activation12 that persists despite ART,
13–15 although the causality of this relationship has not been fully elucidated. Lastly, 

accelerated immune senescence may result from continuous, low-grade immune activation 

due to repeated antigenic stimulation among PLWH.16 Indices of immune senescence, 

including markers of T cell activation and telomere shortening, are similarly associated with 

lung function abnormalities.17,18

Among patients with COPD, systemic inflammation is associated with disease severity, 

exacerbations and overall mortality.19,20 Biomarkers of macrophage activation and systemic 

inflammation have also been associated with impaired lung function and parenchymal 

abnormalities in U.S. and European HIV cohorts.17,21–23 However, these findings may not 

be applicable to sub-Saharan Africa, where PLWH present for HIV care at advanced disease 

stages 24 and air pollution rather than smoking is the major chronic lung disease risk 

factor25–28

To address this knowledge gap, we measured lung function, systemic inflammation (high 

sensitivity C-reactive protein (hsCRP), interleukin 6 (IL-6)) and macrophage activation 

(soluble CD14 (sCD14) and soluble CD163 (sCD163)) among a mixed cohort of older-age 

PLWH and population-based, HIV-uninfected controls in rural Uganda. We hypothesized 

that systemic inflammation and macrophage activation would be associated with lower lung 

function, the effect of which would be the greatest among PLWH.

METHODS

Participants were enrolled in the Uganda Non-Communicable Diseases and Aging Cohort 

(UGANDAC; NCT02445079), a mixed cohort of PLWH and population-based HIV-

uninfected controls described in detail previously.29,30 In brief, a convenience sample of 

PLWH were recruited from the HIV outpatient clinic at the Mbarara Regional Referral 
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Hospital who were at least 40 years of age and had been on antiretroviral therapy for at least 

three years. HIV-uninfected controls were recruited from the complete population census of 

a cluster of 8 villages approximately 20 kilometers from the HIV clinic, were sex- and age-

matched (by age quartile) to PLWH, and were confirmed to be HIV negative prior to study 

visits. We collected data on demographics, medical history, socioeconomic status (SES)31, 

tobacco exposure32 and respiratory symptoms.33 We measured serum concentrations of 

hsCRP by latex immunoturbidimetry (LabCorp, Burlington, NC) and plasma concentrations 

of IL-6 (MesoScale Discovery, Rockville, MD), sCD14 and sCD163 (R&D Systems, 

Minneapolis, MN) with ELISA according to manufacturer instructions at the Laboratory for 

Clinical Biochemistry Research at the University of Vermont. We defined HIV viral 

suppression as a viral load below the assay detection limit (plasma: <40 copies/uL; dried 

blood spot: <550 copies/uL; Roche Cobas® assay, Pleasanton, CA; assay limitations 

changed due to local clinical practice modification).

Forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) were 

measured by trained research assistants using the EasyOne® Plus handheld spirometer (ndd 

Medical Technologies Inc., Andover MA) in accordance with American Thoracic Society 

(ATS) guidelines.34,35 Four puffs of albuterol (Ventolin, GlaxoSmithKline, Philadelphia, PA) 

were administered to participants with FEV1/FVC<0.7 and spirometry was repeated after 10 

minutes. Spirometry was interpreted by two pulmonologists (CMN, DCC) using National 

Health and Nutrition Examination Survey III (NHANES III) prediction equations with 

African American correction factors,36 given their similarity to East African prediction 

equations.37 COPD was defined as post-bronchodilator FEV1/FVC<0.7, and obstruction 

severity was defined using Global Initiative for Chronic Obstructive Lung Disease (GOLD) 

criteria.38

Statistical Analysis

Cohort characteristics were compared by HIV serostatus using parametric and non-

parametric tests as indicated by covariate distributions. To evaluate for selection bias, 

demographics were compared between those who completed and those who declined 

spirometry, and between those with and without ATS-acceptable spirometry.

Our primary outcome of interest was lung function (in mL), as measured by FEV1 and FVC. 

Secondary outcomes of interest included self-reported respiratory symptoms, defined as self-

reported cough, phlegm production, wheezing or dyspnea. Our explanatory variables of 

interest were systemic inflammation and macrophage activation, which included blood 

levels of hsCRP, IL-6, sCD14 and sCD163. Serum biomarkers were log transformed and 

divided by the interquartile range (IQR) of the distribution,39 except for hsCRP, which was 

categorized according to clinical risk (<1 mg/L, 1–3 mg/L, or >3 mg/L) as previously 

described.40 We fit multivariable linear regression models to evaluate the relationship 

between our outcomes of interest and an IQR increase in IL-6, sCD14 or sCD163, and 

hsCRP risk category. Models were stratified by HIV serostatus and adjusted for predicted 

confounders, which were selected a priori based on scientific plausibility and included age, 

sex, height, smoking, biomass (cooking fuel) exposure and SES. Cooking fuel and SES were 

collinear (p<0.001), so cooking fuel was preferentially included in regression models. 
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Sensitivity analyses were conducted in which lung function outcomes were modeled as 

percent predicted using both NHANES III and Global Lung Initiative equations41 and 

statistical significance was defined with more conservative Bonferroni-corrected P values to 

account for multiple testing (p < 0.0125). Data were analyzed using Stata 13 (StataCorp, 

College Station, TX).

All participants gave written informed consent, and all study procedures were approved by 

the institutional review boards of Mbarara University of Science and Technology and 

Partners Healthcare.

RESULTS

Of the 287 consented study participants, 269 (94%) completed spirometry, 239 (89%) of 

whom met ATS acceptability criteria. There were no differences between those who 

completed or declined spirometry, or between those with or without ATS-acceptable 

spirometry. Among the 239 participants with ATS-acceptable spirometry, 5 participants (2%) 

declined phlebotomy.

Of the 234 participants included in the analysis, 53% (n=125) were PLWH, 46% (n=107) 

were women, and the median age was 52 years (IQR 48–55) (Table 1). Compared to HIV-

uninfected participants, PLWH were more likely to be never smokers (57% [71/125] v. 44% 

[48/109], p=0.01), to live in homes using charcoal rather than firewood for cooking (26% 

[32/125] v. 1% [1/109], p<0.001), and to have higher socioeconomic status (p<0.001). Most 

PLWH (92%, [115/125]) were virally suppressed with a median CD4 count of 472 

cells/mm3 (IQR 374–622). Median time on ART was 9 years (IQR 8–10) and 93% 

(116/125) were on first-line non-nucleoside reverse transcriptase inhibitor-based therapy.

There was no difference in mean FEV1 or FVC percent predicted (%pred) by HIV serostatus 

(FEV1: 103 %pred, 95% confidence interval [95%CI] 101–105; FVC: 104 %pred, 95%CI 

102–106; FEV1/FVC: 98 %pred, 95%CI 97–99). Four percent (9/234) met criteria for 

COPD, most of whom (89%, [8/9]) were PLWH. COPD severity was mild (33% [3/9]) or 

moderate (56% [5/9]) in most cases. COPD prevalence was unchanged when defined as 

FEV1/FVC < lower limit of normal. Respiratory symptoms were reported by 25% (n=58) of 

participants, with no difference by HIV serostatus. Of the 20 participants (9%) who reported 

prior pneumonia and 16 participants (7%) who reported prior tuberculosis, most were 

PLWH (80% [16/20], p=0.02 & 100% [16/16], p<0.001, respectively). There were no 

associations between respiratory symptoms and prior pneumonia or tuberculosis (p=0.03).

Median hsCRP and sCD14 concentrations were higher among PLWH as compared to HIV-

uninfected participants (p<0.001 for both), while median IL-6 and sCD163 concentrations 

were similar (p=0.1 and 0.37, respectively; Supplemental Figure 1). Median hsCRP 

concentrations were also higher among those who lived in homes using charcoal as 

compared to firewood for cooking (p=0.003), while median IL-6, sCD14 and sCD163 

concentrations were no different by cooking fuel type (p=0.52, 0.29 and 0.44, respectively; 

Supplemental Figure 2).
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In multivariable linear regression models adjusted for predicted confounders, among PLWH, 

higher IL-6 was associated with lower FEV1 and FVC while higher sCD163 was associated 

only with lower FVC (IL-6: FEV1 −18.1 (−29.1 to −7.1), FVC −17.1 (−28.2 to −5.9); 

sCD163: FVC −14.3 (−26.9 to −1.7)). Higher hsCRP (>3 vs <1mg/L) was associated with 

lower FEV1 and FVC among both PLWH and HIV-uninfected participants (FEV1: −39.3 

(−61.7 to −16.9) and −37.9 (−63.2 to −12.6), respectively; FVC: −44.0 (−48.4 to −6.4) and 

−58.0 (−88.4 to −27.5), respectively) (Table 2, Supplemental Figures 3 & 4). There were no 

associations between sCD14 and lung function, or between these biomarkers and either 

FEV1/FVC or respiratory symptoms. Interaction terms between HIV serostatus and each 

biomarker were not statistically significant. In sensitivity analyses, relationships between 

hsCRP, IL-6 and sCD14 were unchanged, while the relationship between sCD163 and FVC 

lost statistical significance (Supplemental Table 1).

DISCUSSION

This study is the first to report that biomarkers of macrophage activation (sCD163) and 

systemic inflammation (hsCRP, IL-6) are associated with lower lung function among older 

aged PLWH on antiretroviral therapy in Uganda, and joins just one other study in the region 

that identifies an association between systemic inflammation and COPD among PLWH in 

urban South Africa.42 The magnitude of the change in lung function associated with the 

systemic biomarkers in the current study is similar to that observed in cross-sectional studies 

of cigarette smoking and air pollution exposure,43,44 both of which are leading causes of 

chronic lung disease globally.

Similar relationships between lung function, inflammation and macrophage activation have 

been described in U.S. and European HIV cohorts. In a mixed cohort of male PLWH and 

HIV-uninfected men, Fitzpatrick and colleagues found that PLWH with higher sCD163 had 

lower lung function, while IL-6 was associated with lower lung function in both PLWH and 

HIV-uninfected controls.21 Differences in associations between IL-6 and lung function 

between our cohorts may be due to more prevalent smoking across HIV serotypes in 

Fitzpatrick’s cohort, which has been associated with both IL-6 and lower lung function.45 

hsCRP was also associated with lower lung function in an HIV cohort with higher tobacco 

exposure and more severe lung dysfunction,17 although there was no HIV-uninfected group 

for comparison. Attia et al. found that sCD14 was associated with increased risk of 

radiographic emphysema among PLWH, while no association was present among HIV-

uninfected controls.22 Lung function was lower and COPD prevalence higher compared to 

the current study, which may explain the difference in relationships between sCD14 and 

lung disease. Alternatively, spirometry more readily identifies airways abnormalities rather 

than parenchymal disease, which is more thoroughly assessed with radiographic imaging.46 

Thus, sCD14 may be indicative of parenchymal destruction rather than airways disease in 

PLWH. In a population-based registry of PLWH on ART, Danish investigators found that 

baseline sCD163 levels were associated with increased risk of incident chronic lung disease, 

although spirometry was not completed nor was there an HIV-uninfected population for 

comparison.23
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In contrast to hsCRP and IL-6, which were associated with both FEV1 and FVC, sCD163 

was associated only with FVC among PLWH in this cohort. Activated macrophages, 

identified by CD163, are central to the pathophysiology of lung fibrosis.47,48 Additionally, 

there is increasing recognition of the coexistence of interstitial lung abnormalities in people 

with obstructive lung disease.49 Therefore, the association between sCD163 and FVC 

observed in this cohort may identify a more fibrotic-predominant pattern of HIV-associated 

lung disease, although imaging studies are required to corroborate this hypothesis.

hsCRP was the only biomarker associated with lung function in both PLWH and HIV-

uninfected participants in this cohort. One potential explanation for the effect of hsCRP 

across HIV serotypes may lie in ubiquitous regional biomass smoke exposure.50 While 

several inflammatory biomarkers have been associated with biomass exposure, biomass-

associated hsCRP has also been associated with impaired lung function.26,51 All participants 

in this cohort live in homes where firewood or charcoal is used for cooking, and hsCRP 

levels differed by home cooking fuel type while the other measured biomarkers (IL-6, 

sCD14, sCD163) did not. Thus, biomass smoke exposure may drive elevated hsCRP 

concentrations across HIV serotypes. Although we were not powered to assess for such 

effects, these data provide rationale for future studies investigating the possibility of 

interactive effects of HIV and air pollution-associated lung disease.

The main strength of this analysis is the inclusion of an HIV-uninfected comparator group, 

which allowed us to estimate associations by HIV serostatus. We also conducted spirometry 

in accordance with international standards and utilized rigorous quality control procedures. 

Our study also has several limitations. Firstly, the cross-sectional nature of the analysis 

prevents any determination of causality between systemic inflammation and lung function. 

To address this, we are repeating spirometry and biomarker measurements annually to 

investigate the longitudinal relationship between systemic inflammation and lung function 

trajectory. Second, we may have been underpowered to identify smaller differences in lung 

function by inflammatory biomarkers. Also, biomarkers were measured systemically rather 

than in bronchoalveolar lavage fluid, which could change the observed relationship between 

inflammation and lung function. However, we would expect this to bias our results towards 

the null, further emphasizing our significant findings. Also, DLCO (diffusion capacity for 

carbon monoxide) measurements were not available locally due to infrastructure constraints 

and chest imaging was not obtained, thus we cannot comment on parenchymal abnormalities 

that were not severe enough to impair lung function. Finally, there were no biomass-

unexposed participants in the cohort, thus we cannot estimate the independent effect of 

biomass exposure on systemic inflammation or lung function.

In conclusion, systemic inflammation and macrophage activation are associated with lower 

lung function among PLWH on stable ART in rural Uganda. As AIDS-related mortality 

decreases and life expectancy increases across SSA, identifying the leading causes of 

preventable morbidity among PLWH will be critical. Future work should focus on 

developing the pathophysiologic framework to explain contributions of HIV infection to 

lung health in SSA, identifying low-cost, locally available biomarkers to identify those at 

risk for lung disease, and spur interventional studies to reduce the burden of COPD in the 

region.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Cohort Characteristics

Total Cohort (n = 234) HIV+ (n = 125) HIV− (n = 109)

Age, years 52 [48, 55] 52 [49,56] 52 [48, 55]

HIV positive 125 (53)

Female gender 107 (46) 56 (45) 51 (47)

Smoking History

 Current 35 (15) 11 (9) 24 (22)

 Former 80 (34) 43 (34) 37 (34)

 Never 119 (51) 71 (57) 48(44)

 Smoking years* 0 [0, 18] 0 [0, 15] 5 [0, 26]

Biomass

 Firewood 199 (86) 91 (74) 108 (99)

 Charcoal 33 (14) 32 (26) 1 (1)

Asset Index, quartile

 Poorest 51 (22) 22 (18) 29 (27)

 Poorer 61 (26) 25 (20) 36 (33)

 Richer 59 (25) 31 (25) 28 (26)

 Richest 62 (27) 47 (38) 15 (14)

Education level

 Less than Primary school 128 (55) 62 (50) 66 (61)

 Completed Primary school 79 (34) 47 (38) 32 (29)

 Completed Secondary school 27 (12) 16 (13) 11 (10)

HIV Characteristics

CD4 count, cells/mm3

 < 350 23 (18)

 350 – 499 47 (38)

 ≥ 500 55 (44)

Viral Load, copies/μL

 Undetectable 115 (92)

 Detectable, ≤ 10,000 5 (4)

 Detectable, > 10,000 1 (1)

ART duration, years 9 [8, 10]

ART regimen†

 AZT/3TC/NVP or EFV 101 (81)

 TDF/3TC/NVP or EFV 15 (12)

 TDF/3TC/LPV/r 8 (6)

 AZT/3TC/ABC 1 (1)

Median [IQR] or n (%) unless otherwise noted

*
Among current or former smokers only

†
AZT, zidovudine; 3TC, lamivudine; NVP, nevirapine; TDF, tenofovir; EFV, efavirenz; LPV/r, lopinavir/ritonavir, ABC, abacavir
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